Shanghai AI Laboratory, China
Abstract:Manual endoscopic submucosal dissection (ESD) is technically demanding, and existing single-segment robotic tools offer limited dexterity. These limitations motivate the development of more advanced solutions. To address this, DESectBot, a novel dual segment continuum robot with a decoupled structure and integrated surgical forceps, enabling 6 degrees of freedom (DoFs) tip dexterity for improved lesion targeting in ESD, was developed in this work. Deep learning controllers based on gated recurrent units (GRUs) for simultaneous tip position and orientation control, effectively handling the nonlinear coupling between continuum segments, were proposed. The GRU controller was benchmarked against Jacobian based inverse kinematics, model predictive control (MPC), a feedforward neural network (FNN), and a long short-term memory (LSTM) network. In nested-rectangle and Lissajous trajectory tracking tasks, the GRU achieved the lowest position/orientation RMSEs: 1.11 mm/ 4.62° and 0.81 mm/ 2.59°, respectively. For orientation control at a fixed position (four target poses), the GRU attained a mean RMSE of 0.14 mm and 0.72°, outperforming all alternatives. In a peg transfer task, the GRU achieved a 100% success rate (120 success/120 attempts) with an average transfer time of 11.8s, the STD significantly outperforms novice-controlled systems. Additionally, an ex vivo ESD demonstration grasping, elevating, and resecting tissue as the scalpel completed the cut confirmed that DESectBot provides sufficient stiffness to divide thick gastric mucosa and an operative workspace adequate for large lesions.These results confirm that GRU-based control significantly enhances precision, reliability, and usability in ESD surgical training scenarios.
Abstract:Agroecosystem, which heavily influenced by human actions and accounts for a quarter of global greenhouse gas emissions (GHGs), plays a crucial role in mitigating global climate change and securing environmental sustainability. However, we can't manage what we can't measure. Accurately quantifying the pools and fluxes in the carbon, nutrient, and water nexus of the agroecosystem is therefore essential for understanding the underlying drivers of GHG and developing effective mitigation strategies. Conventional approaches like soil sampling, process-based models, and black-box machine learning models are facing challenges such as data sparsity, high spatiotemporal heterogeneity, and complex subsurface biogeochemical and physical processes. Developing new trustworthy approaches such as AI-empowered models, will require the AI-ready benchmark dataset and outlined protocols, which unfortunately do not exist. In this work, we introduce a first-of-its-kind spatial-temporal agroecosystem GHG benchmark dataset that integrates physics-based model simulations from Ecosys and DayCent with real-world observations from eddy covariance flux towers and controlled-environment facilities. We evaluate the performance of various sequential deep learning models on carbon and nitrogen flux prediction, including LSTM-based models, temporal CNN-based model, and Transformer-based models. Furthermore, we explored transfer learning to leverage simulated data to improve the generalization of deep learning models on real-world observations. Our benchmark dataset and evaluation framework contribute to the development of more accurate and scalable AI-driven agroecosystem models, advancing our understanding of ecosystem-climate interactions.
Abstract:Web agents hold great potential for automating complex computer tasks, yet their interactions involve long-horizon, sequential decision-making with irreversible actions. In such settings, outcome-based supervision is sparse and delayed, often rewarding incorrect trajectories and failing to support inference-time scaling. This motivates the use of Process Reward Models (WebPRMs) for web navigation, but existing approaches remain limited: scalar WebPRMs collapse progress into coarse, weakly grounded signals, while checklist-based WebPRMs rely on brittle template matching that fails under layout or semantic changes and often mislabels superficially correct actions as successful, providing little insight or interpretability. To address these challenges, we introduce WebArbiter, a reasoning-first, principle-inducing WebPRM that formulates reward modeling as text generation, producing structured justifications that conclude with a preference verdict and identify the action most conducive to task completion under the current context. Training follows a two-stage pipeline: reasoning distillation equips the model with coherent principle-guided reasoning, and reinforcement learning corrects teacher biases by directly aligning verdicts with correctness, enabling stronger generalization. To support systematic evaluation, we release WebPRMBench, a comprehensive benchmark spanning four diverse web environments with rich tasks and high-quality preference annotations. On WebPRMBench, WebArbiter-7B outperforms the strongest baseline, GPT-5, by 9.1 points. In reward-guided trajectory search on WebArena-Lite, it surpasses the best prior WebPRM by up to 7.2 points, underscoring its robustness and practical value in real-world complex web tasks.
Abstract:Recent Vision-Language Models (e.g., ColPali) enable fine-grained Visual Document Retrieval (VDR) but incur prohibitive index vector size overheads. Training-free pruning solutions (e.g., EOS-attention based methods) can reduce index vector size by approximately 60% without model adaptation, but often underperform random selection in high-compression scenarios (> 80%). Prior research (e.g., Light-ColPali) attributes this to the conclusion that visual token importance is inherently query-dependent, thereby questioning the feasibility of training-free pruning. In this work, we propose Structural Anchor Pruning (SAP), a training-free pruning method that identifies key visual patches from middle layers to achieve high performance compression. We also introduce Oracle Score Retention (OSR) protocol to evaluate how layer-wise information affects compression efficiency. Evaluations on the ViDoRe benchmark demonstrate that SAP reduces index vectors by over 90% while maintaining robust retrieval fidelity, providing a highly scalable solution for Visual RAG. Furthermore, our OSR-based analysis reveals that semantic structural anchor patches persist in the middle layers, unlike traditional pruning solutions that focus on the final layer where structural signals dissipate.
Abstract:The rise of AI agent frameworks has introduced agent skills, modular packages containing instructions and executable code that dynamically extend agent capabilities. While this architecture enables powerful customization, skills execute with implicit trust and minimal vetting, creating a significant yet uncharacterized attack surface. We conduct the first large-scale empirical security analysis of this emerging ecosystem, collecting 42,447 skills from two major marketplaces and systematically analyzing 31,132 using SkillScan, a multi-stage detection framework integrating static analysis with LLM-based semantic classification. Our findings reveal pervasive security risks: 26.1% of skills contain at least one vulnerability, spanning 14 distinct patterns across four categories: prompt injection, data exfiltration, privilege escalation, and supply chain risks. Data exfiltration (13.3%) and privilege escalation (11.8%) are most prevalent, while 5.2% of skills exhibit high-severity patterns strongly suggesting malicious intent. We find that skills bundling executable scripts are 2.12x more likely to contain vulnerabilities than instruction-only skills (OR=2.12, p<0.001). Our contributions include: (1) a grounded vulnerability taxonomy derived from 8,126 vulnerable skills, (2) a validated detection methodology achieving 86.7% precision and 82.5% recall, and (3) an open dataset and detection toolkit to support future research. These results demonstrate an urgent need for capability-based permission systems and mandatory security vetting before this attack vector is further exploited.
Abstract:Few-shot action recognition (FSAR) has recently made notable progress through set matching and efficient adaptation of large-scale pre-trained models. However, two key limitations persist. First, existing set matching metrics typically rely on cosine similarity to measure inter-frame linear dependencies and then perform matching with only instance-level information, thus failing to capture more complex patterns such as nonlinear relationships and overlooking task-specific cues. Second, for efficient adaptation of CLIP to FSAR, recent work performing fine-tuning via skip-fusion layers (which we refer to as side layers) has significantly reduced memory cost. However, the newly introduced side layers are often difficult to optimize under limited data conditions. To address these limitations, we propose TS-FSAR, a framework comprising three components: (1) a visual Ladder Side Network (LSN) for efficient CLIP fine-tuning; (2) a metric called Task-Specific Distance Correlation Matching (TS-DCM), which uses $α$-distance correlation to model both linear and nonlinear inter-frame dependencies and leverages a task prototype to enable task-specific matching; and (3) a Guiding LSN with Adapted CLIP (GLAC) module, which regularizes LSN using the adapted frozen CLIP to improve training for better $α$-distance correlation estimation under limited supervision. Extensive experiments on five widely-used benchmarks demonstrate that our TS-FSAR yields superior performance compared to prior state-of-the-arts.
Abstract:Neural network constraint satisfaction is crucial for safety-critical applications such as power system optimization, robotic path planning, and autonomous driving. However, existing constraint satisfaction methods face efficiency-applicability trade-offs, with hard constraint methods suffering from either high computational complexity or restrictive assumptions on constraint structures. The Sampling Kaczmarz-Motzkin (SKM) method is a randomized iterative algorithm for solving large-scale linear inequality systems with favorable convergence properties, but its argmax operations introduce non-differentiability, posing challenges for neural network applications. This work proposes the Trainable Sampling Kaczmarz-Motzkin Network (T-SKM-Net) framework and, for the first time, systematically integrates SKM-type methods into neural network constraint satisfaction. The framework transforms mixed constraint problems into pure inequality problems through null space transformation, employs SKM for iterative solving, and maps solutions back to the original constraint space, efficiently handling both equality and inequality constraints. We provide theoretical proof of post-processing effectiveness in expectation and end-to-end trainability guarantees based on unbiased gradient estimators, demonstrating that despite non-differentiable operations, the framework supports standard backpropagation. On the DCOPF case118 benchmark, our method achieves 4.27ms/item GPU serial forward inference with 0.0025% max optimality gap with post-processing mode and 5.25ms/item with 0.0008% max optimality gap with joint training mode, delivering over 25$\times$ speedup compared to the pandapower solver while maintaining zero constraint violations under given tolerance.
Abstract:Multimodal Large Language Models (MLLMs) achieve impressive performance once optimized on massive datasets. Such datasets often contain sensitive or copyrighted content, raising significant data privacy concerns. Regulatory frameworks mandating the 'right to be forgotten' drive the need for machine unlearning. This technique allows for the removal of target data without resource-consuming retraining. However, while well-studied for text, visual concept unlearning in MLLMs remains underexplored. A primary challenge is precisely removing a target visual concept without disrupting model performance on related entities. To address this, we introduce AUVIC, a novel visual concept unlearning framework for MLLMs. AUVIC applies adversarial perturbations to enable precise forgetting. This approach effectively isolates the target concept while avoiding unintended effects on similar entities. To evaluate our method, we construct VCUBench. It is the first benchmark designed to assess visual concept unlearning in group contexts. Experimental results demonstrate that AUVIC achieves state-of-the-art target forgetting rates while incurs minimal performance degradation on non-target concepts.
Abstract:Conditional image generation models have achieved remarkable results by leveraging text-based control to generate customized images. However, the high resource demands of these models and the scarcity of well-annotated data have hindered their deployment on edge devices, leading to enormous costs and privacy concerns, especially when user data is sent to a third party. To overcome these challenges, we propose Refine-Control, a semi-supervised distillation framework. Specifically, we improve the performance of the student model by introducing a tri-level knowledge fusion loss to transfer different levels of knowledge. To enhance generalization and alleviate dataset scarcity, we introduce a semi-supervised distillation method utilizing both labeled and unlabeled data. Our experiments reveal that Refine-Control achieves significant reductions in computational cost and latency, while maintaining high-fidelity generation capabilities and controllability, as quantified by comparative metrics.
Abstract:The rapid progress of Large Language Models has advanced agentic systems in decision-making, coordination, and task execution. Yet, existing agentic system generation frameworks lack full autonomy, missing from-scratch agent generation, self-optimizing agent functionality, and collaboration, limiting adaptability and scalability. We propose SwarmAgentic, a framework for fully automated agentic system generation that constructs agentic systems from scratch and jointly optimizes agent functionality and collaboration as interdependent components through language-driven exploration. To enable efficient search over system-level structures, SwarmAgentic maintains a population of candidate systems and evolves them via feedback-guided updates, drawing inspiration from Particle Swarm Optimization (PSO). We evaluate our method on six real-world, open-ended, and exploratory tasks involving high-level planning, system-level coordination, and creative reasoning. Given only a task description and an objective function, SwarmAgentic outperforms all baselines, achieving a +261.8% relative improvement over ADAS on the TravelPlanner benchmark, highlighting the effectiveness of full automation in structurally unconstrained tasks. This framework marks a significant step toward scalable and autonomous agentic system design, bridging swarm intelligence with fully automated system multi-agent generation. Our code is publicly released at https://yaoz720.github.io/SwarmAgentic/.